Search results for "Trimethylamine N-oxide"
showing 9 items of 9 documents
The Gut Microbial Metabolite Trimethylamine-N-Oxide Is Present in Human Cerebrospinal Fluid
2017
Trimethylamine-N-oxide (TMAO) is a small organic molecule, derived from the intestinal and hepatic metabolism of dietary choline and carnitine. Although the involvement of TMAO in the framework of many chronic diseases has been recently described, no evidence on its putative role in the central nervous system has been provided. The aim of this study was to evaluate whether TMAO is present at detectable levels in human cerebrospinal fluid (CSF). CSF was collected for diagnostic purposes from 58 subjects by lumbar puncture and TMAO was quantified by using liquid chromatography coupled with multiple-reaction monitoring mass spectrometry. The molecule was detected in all samples, at concentrati…
Loop diuretics decrease the renal elimination rate and increase the plasma levels of trimethylamine‐N‐oxide
2018
Aims Trimethylamine-N-oxide (TMAO) is a novel cardiovascular risk marker. We explored the association of commonly used cardiovascular medications with TMAO levels in patients and validated the identified associations in mice. Methods Detailed history of drug treatment was recorded in 300 patients with cardiovascular disease without diabetes in an observational, cross-sectional study. Animal study was performed in CD1 mice. Results Median plasma TMAO (interquartile range) level was 2.144 (1.570-3.104) μmol l-1 . Among nine cardiovascular drug groups, the use of loop diuretics (0.510 ± 0.296 in users vs. 0.336 ± 0.272 in nonusers, P = 0.008) and mineralocorticoid receptor antagonists (0.482 ±…
Diabetes is Associated with Higher Trimethylamine N-oxide Plasma Levels
2016
Recent studies have revealed strong associations between systemic trimethylamine N-oxide (TMAO) levels, atherosclerosis and cardiovascular risk. In addition, plasma L-carnitine levels in patients with high TMAO concentrations predicted an increased risk for cardiovascular disease and incident major adverse cardiac events. The aim of the present study was to investigate the relation between TMAO and L-carnitine plasma levels and diabetes. Blood plasma samples were collected from 12 and 20 weeks old db/db mice and patients undergoing percutaneous coronary intervention. Diabetic compared to non-diabetic db/L mice presented 10-fold higher TMAO, but lower L-carnitine plasma concentrations at 12 …
Plasma trimethylamine-N-oxide and related metabolites are associated with type 2 diabetes risk in the Prevención con Dieta Mediterránea (PREDIMED) tr…
2018
Background The role of trimethylamine-N-oxide (TMAO) in type 2 diabetes (T2D) is currently partially understood and controversial. Objective The aim of this study was to investigate associations between TMAO and related metabolites with T2D risk in subjects at high risk of cardiovascular disease. Design This is a case-cohort design study within the Prevencion con Dieta Mediterranea (PREDIMED) study, with 251 incident T2D cases and a random sample of 694 participants (641 noncases and 53 overlapping cases) without T2D at baseline (median follow-up: 3.8 y). We used liquid chromatography-tandem mass spectrometry to measure plasma TMAO, l-carnitine, betaine, lyso-phosphatidylcholine (LPC) and l…
Choline Metabolism and Risk of Atrial Fibrillation and Heart Failure in the PREDIMED Study
2020
Abstract Background Few studies have examined the associations of trimethylamine-N-oxide (TMAO) and its precursors (choline, betaine, dimethylglycine, and L-carnitine) with the risk of atrial fibrillation (AF) and heart failure (HF). This study sought to investigate these associations. Methods Prospective associations of these metabolites with incident AF and HF were examined among participants at high cardiovascular risk in the PREDIMED study (PREvención con DIeta MEDiterránea) after follow-up for about 10 years. Two nested case-control studies were conducted, including 509 AF incident cases matched to 618 controls and 326 HF incident cases matched to 426 controls. Plasma levels of TMAO an…
Determination of trimethylamine-N-oxide in combination withl-carnitine andγ-butyrobetaine in human plasma by UPLC/MS/MS
2015
An ultra-high-performance liquid chromatography-mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine-N-oxide (TMAO) simultaneously with TMAO-related molecules L-carnitine and γ-butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)-type column with ammonium acetate-acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers.
CCDC 1557841: Experimental Crystal Structure Determination
2017
Related Article: Filip Topić, Rakesh Puttreddy, J. Mikko Rautiainen, Heikki M. Tuononen, Kari Rissanen|2017|CrystEngComm|19|4960|doi:10.1039/C7CE01381G
A bacterial metabolite, trimethylamine N-oxide, disrupts the hemostasis balance in human primary endothelial cells but no coagulopathy in mice
2019
: The gut microbial metabolite, trimethylamine N-oxide (TMAO), was previously reported to induce platelet hypersensitivity, which leads to thrombotic risk. However, the molecular mechanism underlying the effects of TMAO on endothelial cells (EC), which is the primary vessel wall contact with the lumen, remains unclear. Here, we investigated the impact of TMAO on procoagulant activity (PCA) in EC and mice, for a possible link between microbiota and coagulation. To test the PCA of TMAO in EC, we performed one-stage clotting assays and converted into PCA. Antitissue factor (TF) antibody was used to test the TF role in PCA. Quantitative PCR was performed to measure the TF, thrombomodulin, IL-6,…
Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
2014
Abstract Aims Trimethylamine-N-oxide (TMAO) is produced in host liver from trimethylamine (TMA). TMAO and TMA share common dietary quaternary amine precursors, carnitine and choline, which are metabolized by the intestinal microbiota. TMAO recently has been linked to the pathogenesis of atherosclerosis and severity of cardiovascular diseases. We examined the effects of anti-atherosclerotic compound meldonium, an aza-analogue of carnitine bioprecursor gamma-butyrobetaine (GBB), on the availability of TMA and TMAO. Main methods Wistar rats received L-carnitine, GBB or choline alone or in combination with meldonium. Plasma, urine and rat small intestine perfusate samples were assayed for L-car…